Separation theorem

How to show that two convex sets are disjoint?

Theorem 1. If $C, D \subseteq \mathbb{R}^d$ are convex sets and $C \cap D = \emptyset$, then there exists a hyperplane separating C and D. That is, there exists $\mathbf{a} \in \mathbb{R}^d$, $b \in \mathbb{R}$ such that $\forall \mathbf{x} \in C, \mathbf{a}^T \mathbf{x} \leq b$ $\forall \mathbf{x} \in D, \mathbf{a}^T \mathbf{x} \geq b$

Separation can be strict if C and D closed and one bounded.

1: Why is the theorem true if C and D are compact? (in \mathbb{R}^d compact means closed and bounded)

2: Why is the theorem true if *C* compact and *D* closed?

3: Why is the theorem true in general?